Learning the Discriminative Power-Invariance Trade-Off

Manik Varma
Microsoft Research India
manik@microsoft.com

Debajyoti Ray
Gatsby Computational Neuroscience Unit
University College London
debray@gatsby.ucl.ac.uk

Task Specific Trade-Off

6 6 6 6 6 9 9 9 9 Don't want rotation invariance

Do want rotation invariance

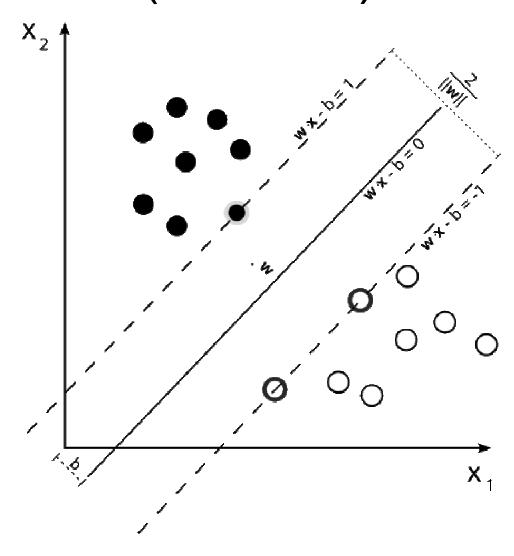
Don't want size invariance

What is the right amount of invariance?

Solution: Sparse Multiple **Kernel Learning Classification** Formulation: We implement our proposed solution by learning the optimal domain specific kernel as a linear combination of base kernels, i.e.

$$K_{\text{opt}} = \sum_{k} d_k K_k$$

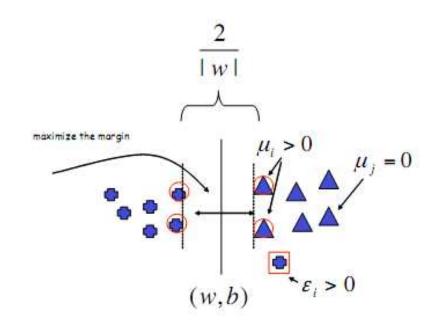
SVM and Kernels- a quick review (6 slides)



The QLP problem:

$$\min_{\mathbf{w}, \mathbf{b}, \varepsilon_{i}} \frac{1}{2} w \square w + v \sum_{i} \varepsilon_{i}$$
subject to
$$\mathbf{y}_{i} \left(\mathbf{w} \square \mathbf{x}_{i} - \mathbf{b} \right) \ge 1 - \varepsilon_{i}$$

$$\varepsilon_{i} \ge 0$$



The Lagrangian takes the following form:

$$L(\mathbf{w}, b, \epsilon_i, \mu) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + \nu \sum_{i=1}^{m} \epsilon_i - \sum_{i=1}^{m} \mu_i \left[y_i (\mathbf{w} \cdot \mathbf{x}_i - b) - 1 + \epsilon_i \right] - \sum_{i=1}^{m} \delta_i \epsilon_i$$

Where the criteria function is:

$$\theta(\mu) = \min_{\mathbf{w}, b, \epsilon} L(\mathbf{w}, b, \epsilon, \mu, \delta).$$

Since the minimum is obtained at the vanishing partial derivatives:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i} \mu_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\frac{\partial L}{\partial b} = \sum_{i} \mu_{i} y_{i} = 0$$

$$\frac{\partial L}{\partial \epsilon_{i}} = \nu - \mu_{i} - \delta_{i} = 0$$

Substituting these results/constraints back into the Lagrangian we obtain the dual problem:

$$\max_{\mu_1,...,\mu_m} \quad \theta(\mu) = \sum_{i=1}^m \mu_i - \frac{1}{2} \sum_{i,j} \mu_i \mu_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

$$subject \quad to$$

$$0 \le \mu_i \le \nu \qquad i = 1,...,m$$

$$\sum_{i=1}^m y_i \mu_i = 0$$

In compact form, define $M_{ij} = y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$

$$\underline{\theta}(\boldsymbol{\mu}) = \boldsymbol{\mu}^{\mathsf{T}} \mathbf{1} - \frac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} M \boldsymbol{\mu}$$

The Kernel Trick

- note that the dual problem doesn't explicitly use x or any function other then the inner products.
- Instead use

$$k(x_i, x_j) = \phi(x_i) \Box \phi(x_j)$$

were $\phi(x): \mathbb{R}^n \to F$ where F is an inner-product space.

Classifying New Instances

- Solving The QLP of the dual form will yield the solution for the Lagrange multipliers μ1, ..., μm.
- we can express φ(w) as a function of the (mapped) examples:

$$\phi(w) = \sum \mu_i y_i \phi(x_i)$$

To classify a new point x:

$$f(\mathbf{x}) = sign(\phi(\mathbf{w})^{\top}\phi(\mathbf{x}) - b) = sign(\sum_{i} \mu_{i}y_{i}\phi(\mathbf{x}_{i})^{\top}\phi(\mathbf{x}) - b)$$
$$= sign(\sum_{i} \mu_{i}y_{i}k(\mathbf{x}_{i}, \mathbf{x}) - b).$$

Back to our problem:

Learning the Discriminative Power-Invariance Trade-Off

- Solution: "learning the optimal domain specific kernel as a linear combination of base kernels.
- "Kernalize" the base descriptors (many ways)

$$\mathbf{K}_{\text{opt}} = \sum_{k} d_{k} \mathbf{K}_{k}$$

$$\mathbf{K}_k(\mathbf{x}, \mathbf{y}) = \exp(-\gamma_k f_k(\mathbf{x}, \mathbf{y}))$$

$$\underset{\mathbf{w}, \mathbf{d}, \boldsymbol{\xi}}{\text{Min}} \qquad \qquad \frac{1}{2} \mathbf{w}^t \mathbf{w} + C \mathbf{1}^t \boldsymbol{\xi} + \boldsymbol{\sigma}^t \mathbf{d} \tag{1}$$

subject to
$$y_i(\mathbf{w}^t \phi(\mathbf{x}_i) + b) \ge 1 - \xi_i$$
 (2)

$$\xi \ge 0, \mathbf{d} \ge 0, \mathbf{Ad} \ge \mathbf{p}$$
 (3)

where
$$\phi^t(\mathbf{x}_i)\phi(\mathbf{x}_j) = \sum_k d_k \phi_k^t(\mathbf{x}_i)\phi_k(\mathbf{x}_j)$$
 (4)

The dual form

$$\max_{\alpha \delta} \qquad 1^t \alpha + \mathbf{p}^t \delta \tag{5}$$

subject to
$$0 \le \delta$$
, $0 \le \alpha \le C$, $\mathbf{1}^t \mathbf{Y} \alpha = 0$ (6)

$$\frac{1}{2} \alpha^t \mathbf{Y} \mathbf{K}_k \mathbf{Y} \alpha \le \sigma_k - \delta^t \mathbf{A}_k$$
 (7)

The dual is convex with a unique global optimum. It's a standard SOCP problem and can be solved relatively efficiently using off the shelf packages such as SeDuMi.

- Large Scale Reformulation: We reformulate the primal so that we can use standard SVM solvers to tackle large scale problems involving hundreds of kernels.
- Reformulation: Minimise $T(\mathbf{d})$ subject to $d \ge 0$, $Ad \ge \mathbf{p}$
- Where:

$$T(\mathbf{d}) = \operatorname{Min}_{\mathbf{w},\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^{t}\mathbf{w} + C\mathbf{1}^{t}\boldsymbol{\xi} + \boldsymbol{\sigma}^{t}\mathbf{d} \qquad (8)$$
subject to
$$y_{i}(\mathbf{w}^{t}\boldsymbol{\phi}(\mathbf{x}_{i}) + b) \ge 1 - \xi_{i} \quad (9)$$

$$\boldsymbol{\xi} \ge 0 \qquad (10)$$

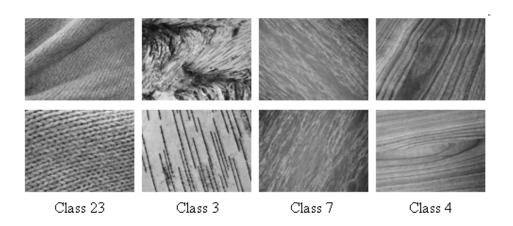
The dual of T(d):
$$W(d) = \max_{\alpha} 1^t \alpha + \sigma^t d - \frac{1}{2} \sum_k d_k \alpha^t Y K_k Y \alpha$$
 (11) subject to $0 \le \alpha \le C$, $1^t Y \alpha = 0$ (12)

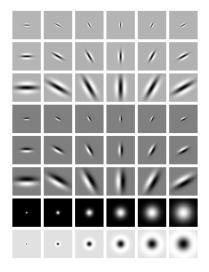
$$\frac{\partial T}{\partial d_k} = \frac{\partial W}{\partial d_k} = \sigma_k - \frac{1}{2} \alpha^{*t} \mathbf{Y} \mathbf{K}_k \mathbf{Y} \alpha^*$$

$$\Rightarrow d_k^{n+1} = d_k^n - \epsilon^n (\sigma_k - \frac{1}{2} \alpha^{*t} \mathbf{Y} \mathbf{K}_k \mathbf{Y} \alpha^*)$$

Results:

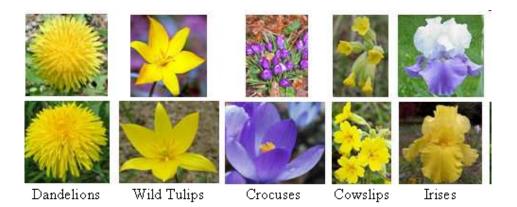
The UIUC Texture Database: 25 classes, 40 images per class.





	1-NN	SVM (1-vs-1)	SVM (1-vs-All)
None (patch)	82.39 ± 1.58	91.46 ± 1.13	92.87 ± 1.40
None (MR)	82.18 ± 1.51	91.16 ± 1.05	91.87 ± 1.50
Rotation (patch)	97.83 ± 0.63	98.18 ± 0.43	98.53 ± 0.12
Rotation (MR)	93.00 ± 1.04	96.69 ± 0.74	97.07 ± 0.83
Rotation (Fractals)	95.05 ± 0.93	97.24 ± 0.76	97.60 ± 0.92
Scale	76.77 ± 1.77	87.04 ± 1.57	88.73 ± 1.03
Rotation + Scale	90.35 ± 1.15	95.12 ± 0.95	96.00 ± 1.00
biLipschitz	95.35 ± 0.88	97.19 ± 0.52	97.73 ± 0.12
$\operatorname{MKL}\operatorname{Block} l_1$		96.94 ± 0.91	97.67 ± 0.50
Our		98.76 ± 0.65	98.90 ± 0.68

The Oxford Flowers Database: 17 classes, 80 images per class.



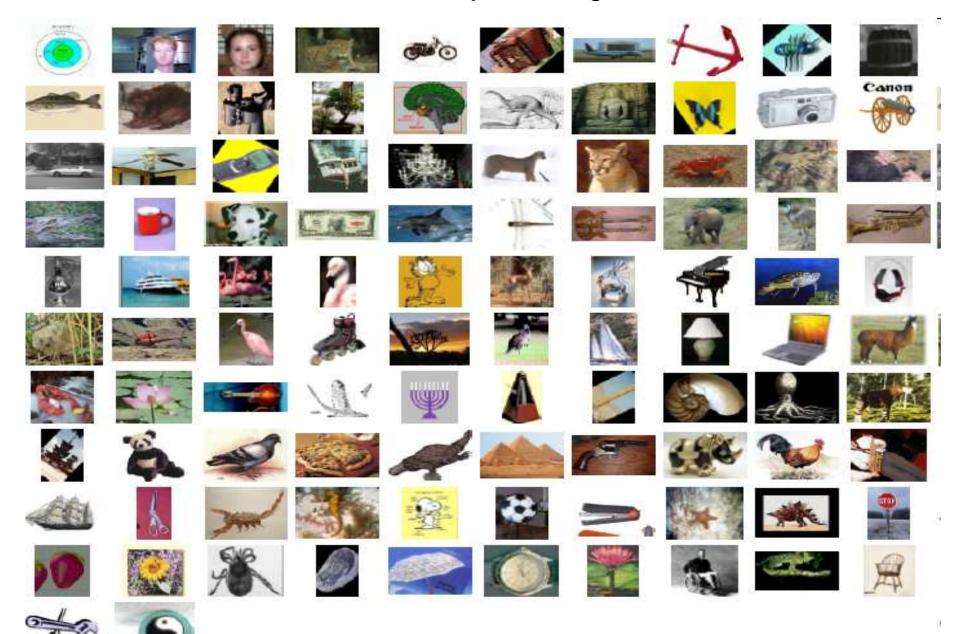
	Shape	Colour	Texture
Dandelions vs Wild Tulips	3.94	0.00	0.00
Dandelions vs Crocuses	0.42	2.46	0.00
Cowslips vs Irises	1.48	2.00	1.36

Descriptor	1NN	SVM (1-vs-1)
Shape	$53.30 \pm 2.69\%$	$68.88 \pm 2.04\%$
Colour	$47.32 \pm 2.59\%$	$59.71 \pm 1.95\%$
Texture	$39.36 \pm 2.43\%$	$59.00 \pm 2.14\%$

Table 2. Classification results on the Oxford flowers dataset. The MKL-Block l_1 method of [4] achieves $77.84 \pm 2.13\%$ for 1-vs-1 classification when combining all the descriptors. Our results are $80.49 \pm 1.97\%$ (1-vs-1) and $82.55 \pm 0.34\%$ (1-vs-All).

If we force texture weights to be greater than colour weights using **Ad** ≥ **p** we get 81.12 ± 2.09%.

Caltech 101 Object Categorization



	1-NN	SVM (1-vs-1)	SVM (1-vs-All)
Shape GB1	39.67 ± 1.02	57.33 ± 0.94	62.98 ± 0.70
Shape GB2	45.23 ± 0.96	59.30 ± 1.00	61.53 ± 0.57
Self Similarity	40.09 ± 0.98	55.10 ± 1.05	60.83 ± 0.84
Shape 180	32.01 ± 0.89	48.83 ± 0.78	49.93 ± 0.52
Shape 360	31.17 ± 0.98	50.63 ± 0.88	52.44 ± 0.85
App Colour	32.79 ± 0.92	40.84 ± 0.78	43.44 ± 1.46
App Gray	42.08 ± 0.81	52.83 ± 1.00	57.00 ± 0.30
MKL Block I ₁		77.72 ± 0.94	83.78 ± 0.39
Our		81 <i>5</i> 4 ± 1.08	89 <i>5</i> 6±0 <i>5</i> 9